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k-means algorithm : back to history

It is a non-supervised learning

Partitioning n observations into k (except for choosing k !
clusters in which each observation _ Partition of the data space into
belongs to the cluster with the : Voronoi cells.
nearest mean. 1644 Descartes 1850 Dirichlet 1907 Voronoi

Physician John Snow analyzed the 1854 cholera epidemic in London

i Aenyt Strong correlation of
AN —>  deaths with proximity to a
Y OO particular water pump
o Sources of drinking water, pumps |dentification of the infected pump
that address drawing the boundary of equal distance between a

pump and other pumps
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k-means algorithm

Definition: k-means clustering

Given a set S of n observations (X4, X, ..., X,) and a k a given integer much smaller than
n, k-means aims at partition the n observations into k sets {S,, S,, ..., S} so as to
minimize the within-cluster sum of squares (WCSS),distances of the elements of each set
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K-means algorithm

k
MinS" 3 [x, - )

i=1 X] ESi

", g =argmin Y’ [x; - 4 H2
Iu Xj €S

Loyd’s Algorithm

Assignment step:
Assign each observation x; to a new cluster Sijhich ,u}“nas the least distance to x;

Sy ={x €8x~ <[x - ' w1 <]

Update step 1
g N N !\|+1 — X
Calculate the new centroids n 1of the new clusters S! H; Cards’ = |
Convergence criterion )
Based on the evolution of the centroids: " |4 — 1| <&,
j=1k

Or to minimize equivalently
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Loyd’s Algorithm
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1. k initial "means" (in this
case k=3) are randomly
generated within the data

domain (shown in color).

Indicators

By Huyghens theorem

K-means algorithm

MmZZHx _'”'H y,_argmanHx —u |

i=1 x; €S Xj €S

}. *

N

2. k clusters are created by 3. The centroid of each of the 4. Steps 2 and 3 are repeated

associating every observation k clusters becomes the new  until convergence has been

with the nearest mean. The mean. reached.

partitions here represent the

ZIIX-#II anlﬂ. ulf +ZZHX -

X; €S —1XeS

Clusters separability mdlcator Clusters compac:ty indicator.

Bregman Divergences and Data Metrics 4- Clustering



0.9 v

0.8 1

0.7 +

0.6 +

0.5+

0.4 4

0.3 +

0.2

0.1

Iteration #0

k-means algorithm

k
Min" > [x; —yi”z ,w=argmin Y |Ix; — u ||2

i=1 X] ESi /,l

Loyd’s Algorithm

0

0.1

0.2

0.3

0.4

0.5

06 07 08 09 1

Bregman Divergences and Data Metrics

XJ ESi

4- Clustering



k-means algorithm : the problem of initialization

k
Minz Z ij — L

i=1 X] ESi

", g =argmin Y’ [x; - 4 H2
Iu Xj €S

Loyd’s Algorithm necessitates an initialization of the k first centroids
And is very sensitive to the initialization

Simple example with one iteration convergence
and two different initialization
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k-means algorithm : the problem of initialization

k
Minz Z ij — L

i=1 X] ESi

*, 4 =argmin > % —u H2
2 X;j €S
Better Initialization than random initialization the k-means++ algorithm

Choose the first center 4, uniformly at random within the data set S
For each data point x; in S, compute Hx = L, H2

Choose the new center «, at random in S, using the weighted probability

2
distribution proportional to HX i /”10 H

Repeat until k centers have been chosen
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k-means algorithm : the problem of choosing k
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K-medoids algorithm

Definition Medoid of a finite set of points a distance d.
The medoid z,of a set of N points of IR", S with respect the distance d is the point

belonging to S B _ 1
y=argmin > d(x,s)  # u=-2%
®-. seS i-LN it 2
7 Centroid for d(x, y) =[x~y
¢ o o
“.@--  Pathologic case!

Definition: k-medoids clustering
Given a set S of n observations (X4, X,, ..., X,), and a k a given integer much smaller than
n, k-medoids aims at partition the n observations into k sets {S,, S,, ..., S;} so as to
minimize the within-cluster sum of squares (WCSS),distances of the elements of each set
S; and its medoid g k
Min> > d(x;— &), @ =argmin > d(X;,x)
i=1 x; €S, HES x5
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K-medoids algorithm

Partitioning Around Medoids (PAM)

Assignment step:

Assign each observation x; to a new cIusterS which zz ,u in S has the least
distance to x;,

s} ={x esx -7 <[x & 1 <k|

Swap step
For each cluster SJN pick randomly a non- med0|d pomt X" # ,uJ and

recompute the global cost by exchanging X, and

E() =Y Y d(x, -7 )+Zd(x,, :

i=h Xj €S; Xj €S;

If E(x')<E(#'), then swap: x' — u

Convergence criterion

Based on the non-decreasing of E
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k-medoids algorithm

K-means ++ versus (PAM)
The benefit of using k-medoids

(in this case)
k-means ++
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Clustering with Bregman divergence

Probabilistic framework

X a random variable that takes values in a finite set X = {X; }

i=1,n

Minimizing the global distorsion pu=argmin E, [DJ (X, s)] =argmin Zvi D, (x;,S)
seS SeS i=n

1
Characterization of BG 4 =— Z Vi X Independent of D,

n i=1,n

But the min still depends on D,

Minimizing the Bregman information of the random variable X

1,(X) = EV[DJ(X@: min 3"V, D, (x.,5)

S e Si:Ln

If M is the random variable representing the initial X, L,(M)=1,(X)-1,(M)
M also minimizes the loss in Bregman Information

M random variable taking in the finite set M = {,uh}h:l,k Induced probability distribution 7 = 2 Y

is.t.x;eX,
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Clustering with Bregman divergence

Algorithm

Assignment step:
Assign each x;to a new cluster which has the least Bregman divergence distance to x;,

X' ={x € X,D, 0%, 1) <Dy (%, 14), VI <k}

Update step
Calculate the new centroid of the new clusters and the corresponding induced probability distributions :

N+1 Z V| , lurl]\l-rl_iN Z X|

|StX|eXh h X|€Xh

Convergence criterion

Based on the evolution of the centroids: thkHu "l
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Thanks for your attention
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