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k-means algorithm : back to history
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Partitioning n observations into k

clusters in which each observation 

belongs to the cluster with the 

nearest mean. 

It is a non-supervised learning 

(except for choosing k !)

Partition of the data space into 

Voronoi cells. 

1644  Descartes  1850 Dirichlet 1907 Voronoi

Physician John Snow analyzed the 1854 cholera epidemic in London

Strong correlation of 

deaths with proximity to a 

particular water pump

Each bar represents a death at 

that address
Identification of the infected pump Sources of drinking water, pumps 

drawing the boundary of equal distance between a  

pump and other pumps 



k-means algorithm
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Definition: k-means clustering

Given a set S of n observations (x1, x2, …, xn) and a k a given integer much smaller than

n, k-means aims at partition the n observations into k sets {S1, S2, …, Sk} so as to

minimize the within-cluster sum of squares (WCSS),distances of the elements of each set

Si and its centroid i 2 2
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Or to minimize equivalently

k-means algorithm
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Assignment step:

Assign each observation xi to a new cluster       which       has the least distance to xi

Update step

Calculate the new centroids         of the new clusters  

Convergence criterion

Based on the evolution of the centroids:
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Loyd’s Algorithm



Or to minimize equivalently

k-means algorithm
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Clusters separability indicator Clusters compacity indicator. 
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By Huyghens theorem



Or to minimize equivalently

k-means algorithm

6 Bregman Divergences and  Data Metrics 4- Clustering

2 2

1

, argmin
j i j i

k

j i i j

i x S x S

Min x x  
  

   

Loyd’s Algorithm



Or to minimize equivalently

k-means algorithm : the problem of initialization
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Loyd’s Algorithm necessitates an initialization of the k first centroids

And is very sensitive to the initialization

Simple example with one iteration convergence

and two different initialization



Or to minimize equivalently 

k-means algorithm : the problem of initialization
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Better initialization than random initialization the k-means++ algorithm 

Choose the first center uniformly at random within the data set S

For each data point xj in S, compute 

Choose the new center at random in S, using the weighted probability

distribution proportional to 

Repeat until k centers have been chosen
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Or to minimize equivalently 

k-means algorithm : the problem of choosing k
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Or to minimize equivalently 

k-medoids algorithm
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Definition Medoid of a finite set of points a distance d. 

The medoid  of a set of N points of IRn, S with respect the distance d is the point 

belonging to S
d
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Definition: k-medoids clustering

Given a set S of n observations (x1, x2, …, xn), and a k a given integer much smaller than

n, k-medoids aims at partition the n observations into k sets {S1, S2, …, Sk} so as to

minimize the within-cluster sum of squares (WCSS),distances of the elements of each set

Si and its medoid i
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Pathologic case!



Or to minimize equivalently 

k-medoids algorithm
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Assignment step: 

Assign each observation xi to a new cluster     which       in S has the least 

distance to xi, 

Swap step

For each cluster      , pick randomly a non-medoid point                 and 

recompute the global cost by exchanging      and  

If                             ,  then swap:

Convergence criterion

Based on the non-decreasing of E
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Partitioning Around Medoids (PAM) 



Or to minimize equivalently 

k-medoids algorithm
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K-means ++ versus  (PAM)

The benefit of using k-medoids 
(in this case)

k-means ++

PAM



Clustering with Bregman divergence
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Minimizing the global distorsion  
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But the min still depends on DJ

Minimizing the Bregman information of the random variable X
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X a random variable that takes values in a finite set 

Probabilistic framework

Independent of DJ
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Or to minimize equivalently 

Clustering with Bregman divergence
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Assignment step: 

Assign each xi to a new cluster which  has the least Bregman divergence distance to xi, 

Update step

Calculate the new centroid of the new clusters  and the corresponding induced probability distributions :

Convergence criterion

Based on the evolution of the centroids:
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Thanks for your attention


